Parabolas

1.0x

Parabolas

Created 2 years ago

Duration 0:26:30
lesson view count 413
Select the file type you wish to download
Slide Content
  1. Conics

    Slide 1 - Conics

    • Portion of a hollow cone that is created when a plane cuts the cone.
  2. Parabola

    Slide 2 - Parabola

    • Only have either A or C
    • Only have 1 square term
  3. Vertical Parabolas

    Slide 3 - Vertical Parabolas

    • Standard Form:
    • Vertex Form:
  4. Vertex Form:

    Slide 4 - Vertex Form:

    • Focal Length P
    • Latus Rectum 4p
    • P
    • Directrix
    • Axis of Symmetry
    • Vertex (h,k)
  5. Standard Form:

    Slide 5 - Standard Form:

    • Vertex Form:
    • Horizontal Parabolas
  6. Vertex Form:

    Slide 6 - Vertex Form:

    • Focal Length P
    • Latus Rectum 4p
    • P
    • Directrix
    • Axis of Symmetry
    • Vertex (h,k)
  7. Ex:1

    Slide 7 - Ex:1

    • Vertex:
    • P=
    • Focus:
    • Directrix:
    • Latus Rectum:
    • Focal Length:
    • Axis of Symmetry:
  8. Ex. 2

    Slide 8 - Ex. 2

    • Complete the Square to change to Vertex Form
    • Get by themselves
    • Complete the square
    • Add 49 to both sides
    • Factor perfect square trinomial
    • Factor right side (linear side)
  9. Ex:2

    Slide 9 - Ex:2

    • Vertex:
    • P=
    • Focus:
    • Directrix:
    • Latus Rectum:
    • Focal Length:
    • Axis of Symmetry:
  10. Ex. 3

    Slide 10 - Ex. 3

    • Divide all by 2
  11. Find the equation of a horizontal parabola going though: (-6,3)  (-3,2)  (-3,4)

    Slide 11 - Find the equation of a horizontal parabola going though: (-6,3) (-3,2) (-3,4)

    • Standard Form:
    • Plug in x & y to create a system of 3 equations
  12. Solving a matrix using rref

    Slide 12 - Solving a matrix using rref

  13. Try on Your Own!!

    Slide 13 - Try on Your Own!!

    • 1.  Determine if each parabola is vertical or horizontal:
    • 2.  Write this parabola‚Äôs equation in vertex form: 
    • 3.  Graph the following parabola.  State the vertex, p, focus, directrix, latus rectum, focal length
    • and axis of symmetry.